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1. Introduction

Orthogonal matrix polynomials are becoming more and more relevant in the
two last decades. Classical orthogonal polynomials are extended to orthogonal
matrix polynomials by Akta³ et al. (2012), Khammash and Shehata (2012),
Metwally et al. (2008), Shehata (2011)-Shehata (2015), and some results in
the theory of classical orthogonal polynomials are extended to orthogonal ma-
trix polynomials, see Al-Gonah (2014), Altin and Çekim (2012), Çekim et al.
(2011), Çekim et al. (2013), Defez (2013), Jódar and Defez (1998), Kargin and
Kurt (2013), Metwally and Shehata (2013), Shehata (2009) and Yasmin (2014).
Laguerre matrix polynomials have been introduced and studied in Jódar and
Defez (1998), Jódar and Sastre (1998), Jódar and Sastre (2001), Jódar and
Sastre (2004), Sastre and Defez (2006), Sastre Defez and Jódar (2006), Sastre
and Jódar (2006). As in the corresponding problem for scalar functions, the
problem of the development of matrix functions in a series of Laguerre matrix
polynomials requires some new results about the matrix operational calculus
not available in the literature. From this motivation, we prove some new proper-
ties for the Laguerre matrix polynomials. The outline of this paper is as follows:
In Section 2, we give addition, summation formulas, and a di�erent approach
to proof of generating matrix functions of the Laguerre matrix polynomials and
write these polynomials as hypergeometric matrix functions. Furthermore, we
show the integral representation for Laguerre matrix polynomials. We get ex-
pansions of the Laguerre matrix polynomials as series of Hermite and Legendre
matrix polynomials in Section 3. We get some results which follow from this
new generating matrix function, involving the Horn's matrix functions of two
variables and hypergeometric matrix functions of three variables in Section 4.
Finally, we de�ne the generalized Laguerre matrix polynomials of two variables
with the hypergeometric matrix function.

Throughout this paper, if A is a matrix in Cr×r, its spectrum σ(A) denotes
the set of all the eigenvalues of A. If f (z) and g(z) are holomorphic functions
of the complex variable z, which are de�ned in an open set Ω of the complex
plane and A, B are matrices in Cr×r such that σ(A) ⊂ Ω, σ(B) ⊂ Ω then
from the properties of matrix functional calculus (see Dunford and Schwartz
(1957)), it follows that: f(A)g(B) = g(B)f(A), where AB = BA.

If y is a complex number with |y| < 1 and a is a complex number, then

g (a) = (1− y)
−a

=
∑∞
n=0

(a)n
n! y

n is an holomorphic function in Cr×r. There-
fore, applying the holomorphic functional calculus (see Dunford and Schwartz
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(1957)) to any matrix A in Cr×r, the image of g, acting on A yields

g (A) = (1− y)
−A

=

∞∑
n=0

(A)n
n!

yn; |y| < 1, (1)

where (A)n is the Pochhammer symbol or shifted factorial which is de�ned by

(A)n = A (A+ I) (A+ 2I) . . . (A+ (n− 1) I) ;n ≥ 1, (2)

with (A)0 = I. It is easy to show that

(A)n+k = (A)n (A+ nI)k . (3)

By using (2), it is easy to �nd that

(A)n−k = (−1)k(A)n[(I −A− nI)k]−1; 0 ≤ k ≤ n (4)

and

(−nI)k =
(−1)k n!

(n− k)!
I, 0 ≤ k ≤ n. (5)

So generalized form of equation (1) which is called hypergeometric matrix func-
tion 2F1(A,B;C; z), is de�ned by (see Jódar, and Cortes (1998))

2F1

(
A,B;C; z

)
=
∑
n≥0

(A)n(B)n[(C)n]−1

n!
zn; |z| < 1, (6)

for matrices A,B,C in Cr×r such that

C + nIis an invertible matrix for all integers n ≥ 0. (7)

De�nition 1.1. Let A be a matrix in Cr×r such that

− k /∈ σ(A) for every integer k > 0, (8)

and λ is a complex number with < (λ) > 0, then the Laguerre matrix polyno-
mials are de�ned by (see Jódar et al. (1994))

L(A,λ)
n (x) =

n∑
k=0

(−1)k(A+ I)n[(A+ I)k]−1(λx)k

k!(n− k)!
(9)

and satis�ed the Rodrigues formula

L(A,λ)
n (x) =

x−Aeλx

n!

dn

dxn
[xA+nIe−λx], n ≥ 0. (10)
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According to Jódar et al. (1994), Laguerre matrix polynomials are gener-
ated by

∞∑
n=0

L(A,λ)
n (x) tn = (1− t)−(A+I)

exp

(
−λxt
1− t

)
, (11)

where t ∈ C, |t| < 1, x ∈ C.

Furthermore, Çekim and Altin deal with multiplication formula; (see Çekim
and Altin (2013))

L(A,λ)
n (xy) =

n∑
k=0

(A+ (k + 1)I)n−k
(n− k)!

yk (1− y)
n−k

L
(A,λ)
k (x)

and a new generating matrix function including hypergeometric matrix func-
tion;

∞∑
n=0

(B)n [(A+ I)n]
−1
L(A,λ)
n (x) tn = (1− t)−B 1F1

(
B;A+ I;

−λxt
1− t

)
. (12)

De�nition 1.2. Let A, B and C be matrices in Cr×r such that C + (m+ n)I
is an invertible matrix for all integers m + n ≥ 0. Then the Horn's matrix
functions H6 and Φ3 of two variables are de�ned by (see Shehata (2009))

H6(A;C; z, w) =

∞∑
m,n=0

(A)2m+n[(C)m+n]−1

m!n!
zmwn,

Φ3(B;C; z, w) =

∞∑
m,n=0

(B)m[(C)m+n]−1

m!n!
zmwn.

(13)

De�nition 1.3. Let A1, B1, B2, C1 and C2 be matrices in Cr×r such that
C1 +mI is an invertible matrix for all integers m ≥ 0 and C2 + (n+ p)I is an
invertible matrix for all integers n + p ≥ 0. Then the hypergeometric matrix

functions 3Φ
(4)
M and 3Φ

(1)
G of three variables are de�ned as follows (see Shehata

(2009) and Shehata (2014 b))

3Φ
(4)
M (A1, B1, B1;C1, C2, C2; z, w, u)

=

∞∑
m,n,p=0

(A1)m(B1)m+p[(C1)m]−1[(C2)n+p]
−1

m!n!p!
zmwnup,

3Φ
(1)
G (A1, A1, A1, B1, B2;C1, C2, C2; z, w, u)

=

∞∑
m,n,p=0

(A1)m+n+p(B1)m(B2)n[(C1)m]−1[(C2)n+p]
−1

m!n!p!
zmwnup.

(14)
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We conclude this section recalling a result related to the rearrangement of
the terms in iterated series. If A (k, n) and B (k, n) are matrices in Cr×r for
n ≥ 0 and k ≥ 0, then in an analogous way to the proof of Lemma 11 (see
Rainville (1962)), it follows that

∞∑
n=0

∞∑
k=0

A (k, n) =

∞∑
n=0

[ 12n]∑
k=0

A (k, n− 2k) (15)

and
∞∑
n=0

∞∑
k=0

B (k, n) =

∞∑
n=0

n∑
k=0

B (k, n− k) . (16)

Similarly, we can write

∞∑
n=0

n∑
k=0

B(k, n) =

∞∑
n=0

∞∑
k=0

B(k, n+ k),

∞∑
n=0

[ 12n]∑
k=0

A(k, n) =

∞∑
n=0

∞∑
k=0

A(k, n+ 2k).

(17)

2. Some relations on Laguerre matrix

polynomials

In this section, we obtain some generating functions, new results and rela-
tions for Laguerre matrix polynomials and write these polynomials as hyperge-
ometric matrix functions. Moreover we give integral representation of Laguerre
matrix polynomials. We write Laguerre Matrix Polynomials as hypergeometric
matrix functions in the following theorems.

Theorem 2.1. Let A be a matrix in Cr×r satisfying the spectral condition
(8) and let λ be a complex number with < (λ) > 0. Then Laguerre matrix
polynomials can be written as hypergeometric matrix function:

L(A,λ)
n (x) =

(A+ I)n
n!

1F1

(
− nI;A+ I;λx

)
. (18)

Proof. From (9) and using the relation (5), the equation (18) as follows directly.
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Theorem 2.2. Let A be a matrix in Cr×r satisfying the spectral condition (8)
and let λ be a complex number with < (λ) > 0. For Laguerre matrix polynomi-
als, we have hypergeometric matrix representation as follows:

L(A,λ)
n (x) =

(−λx)n

n!
2F0

(
− nI,−A− nI;−;− 1

λx

)
. (19)

Proof. Taking n− k instead of k in (9), one gets

L(A,λ)
n (x) =

n∑
k=0

(−1)
n−k

(A+ I)n
[
(A+ I)n−k

]−1
(λx)n−k

k!(n− k)!

and using the relations (4) and (5), we get (19).

In the following theorem, we prove the addition formula of the Laguerre
matrix polynomials.

Theorem 2.3. Let A and B be matrices in Cr×r satisfying the spectral con-
dition (8) and let λ be a complex number with < (λ) > 0, then the Laguerre
matrix polynomials satisfy the addition formula as follows:

L(A+B+I,λ)
n (x+ y) =

n∑
k=0

L
(A,λ)
k (x)L

(B,λ)
n−k (y) , (20)

Proof. From equation (11) and the fact that

(1− t)−(A+B+2I)
exp

(
−λ (x+ y) t

1− t

)
= (1− t)−(A+I)

exp

(
−λxt
1− t

)
(1− t)−(B+I)

exp

(
−λxt
1− t

)
we have

∞∑
n=0

L(A+B+I,λ)
n (x+ y) tn =

∞∑
n=0

∞∑
k=0

L
(A,λ)
k (x)L(B,λ)

n (y) tn+k

=

∞∑
n=0

n∑
k=0

L
(A,λ)
k (x)L

(B,λ)
n−k (y) tn.

Comparing the coe�cients of tn, we obtain (20).
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Remark 2.1. (i) Putting A = A− I and B = A− I in equation (20), we get
the following recently result [Çekim (2013), p.820]:

L(2A−I,λ)
n (x+ y) =

n∑
k=0

L
(A−I,λ)
k (x)L

(A−I,λ)
n−k (y) .

(ii) Putting A = B − I, B = A − I and x = y in equation (20), we get the
following recently result [Çekim (2013), p.820]:

L(A+B−I,λ)
n (2x) =

n∑
k=0

L
(B−I,λ)
k (x)L

(A−I,λ)
n−k (x) .

To show the availability of equation (12) we give the following theorem.

Theorem 2.4. Let A and B be commuting matrices in Cr×r satisfying the
spectral condition (8) and let λ be a complex number with < (λ) > 0, then the
Laguerre matrix polynomials have the following relation:

L(A,λ)
n (x) = (A+ I)n [(B)n]

−1

×
n∑
k=0

(A+ I −B)k [(A+ I)k]
−1
L
(A,λ)
k (−x)L

(2B−A−2I,λ)
n−k (x) .

(21)

Proof. One can easily show that

1F1

(
B;A+ I;

−λxt
1− t

)
= exp

(
−λxt
1− t

)
1F1

(
A+ I −B;A+ I;

λxt

1− t

)
. (22)

Using (22) in (12), we get

∞∑
n=0

(B)n [(A+ I)n]
−1
L(A,λ)
n (x) tn

= (1− t)−B exp

(
−λxt
1− t

)
1F1

(
A+ I −B;A+ I;

λxt

1− t

)
=

[ ∞∑
n=0

L(2B−A−2I,λ)
n (x) tn

][ ∞∑
k=0

(A+ I −B)k [(A+ I)k]
−1
L
(A,λ)
k (−x) tk

]
.

With aid of (16), we have (21).

Substituting B = A+ I in equation (21), we get the following corollary.
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Corollary 2.1. Let A be a matrix in Cr×r satisfying the spectral condition
(8) and let λ be a complex number with < (λ) > 0, then the Laguerre matrix
polynomials have the following summation formula:

L(A,λ)
n (x) =

n∑
k=0

[(A+ I)k]
−1
L
(A,λ)
k (−x)L

(A,λ)
n−k (x) .

We shall perform this transformation to exhibit the technique. If we replace

x by x
1−t , t by−

yt
1−t and multiply both sides of (12) by (1− t)−(A+I)

exp
(
−λxt
1−t

)
,

we get

(1− t)−(A+I)

[
1 +

yt

1− t

]−B
exp

(
−λxt
1− t

)
1F1

(
B;A+ I;

λxyt
(1−t)2

1 + yt
1−t

)
=

∞∑
n=0

(B)k[(A+ I)k]−1(1− t)−(A+I+B) exp

(
−λxt
1− t

)
L
(A,λ)
k (

x

1− t
)(−1)kyktk

=

∞∑
n=0

n∑
k=0

(−n)k(B)k
k!

[(A+ I)k]−1L(A,λ)
n (x)yktn

=

∞∑
n=0

2F1

(
− nI,B;A+ I; y

)
L(A,λ)
n (x)tn.

Rearranging the left-hand side of the above equation we obtain a bilateral
generating function involving the Laguerre matrix polynomials and a certain
terminating 2F1 in the following theorem.

Theorem 2.5. Let A and B be commuting matrices in Cr×r satisfying the
spectral conditions (7) and (8) and let λ be a complex number with < (λ) > 0,
then the Laguerre matrix polynomials have the bilateral generating function

∞∑
n=0

L(A,λ)
n (x) 2F1 (−nI,B;A+ I; y) tn = (1− t)−(I+A−B)

(1− t+ yt)
−B

× exp

(
−λxt
1− t

)
1F1

(
B;A+ I;

λxyt

(1− t) (1− t+ yt)

)
.

It is easy to show that∫ ∞
0

e−tI
(√

xt
)A+nI

JA+nI

(
2
√
xt
)
dt = e−xIxA+nI . (23)

where JA (z) is the Bessel matrix functions de�ned by Jódar et al. (1994).
Di�erentiating m times both sides of (23) with respect x and using the fact
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that
d

dz
(zAJA(z)) = zAJA−I(z),

we get

dm

dxm
(
xA+nIe−x

)
=

∫ ∞
0

(√
xt
)A+nI−mI

JA+nI−mI

(
2
√
xt
)
e−ttmdt,

for m = 0, 1, 2, . . . .. Here, it is easy to justify the di�erentiation behind the in-
tegral sign. Settingm = n in (10), we obtain the desired integral representation
of the Laguerre matrix polynomials. These results are summarized below.

Theorem 2.6. Let A be a matrix in Cr×r satisfying the spectral condition
(8) and let λ be a complex number with <(λ) > 0, then the Laguerre matrix
polynomials satisfy the following integral representation:

L(A,λ)
n (x) =

exIx
−1
2 A

n!

∫ ∞
0

e−tIt
1
2A+nIJA

(
2
√
xt
)
dt.

3. Expansions of Laguerre matrix polynomials

in a series of polynomials

In this section, we give expansion of the Laguerre matrix polynomials as
series of Hermite and Legendre matrix polynomials.

Theorem 3.1. Let A be a matrix in Cr×r satisfying the spectral condition
(8) and let λ be a complex number with <(λ) > 0, then the Laguerre matrix
polynomials satisfy the following equations for ‖A‖ > 2

λ :

L(A,λ)
n (x) =

n∑
k=0

(−1)
k
λk(
√

2A)−k

k! (n− k)!
(A+ I)n [(A+ I)k]

−1
Hk (x,A)

×2 F2

(
−(n−k)I

2 , −(n−k−1)I2
A+(k+1)I

2 , A+(k+2)I
2

;

(
λ2A−1

2

))
,

(24)

where Hn (x,A) is the Hermite matrix polynomials, and

L(A,λ)
n (x) =

n∑
k=0

(−1)
k
λk (2k + 1) (

√
2A)−k

(n− k)!2k
(
3
2

)
k

(A+ I)n [(A+ I)k]
−1
Pk (x,A)

×2 F3

(
−(n−k)I

2 , −(n−k−1)I2
(3+2k)I

2 , A+(k+1)I
2 , A+(k+2)I

2

;

(
λ2A−1

2

))
,

(25)

where Pn (x,A) is the Legendre matrix polynomials.
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Proof. By using the relations (16) and (9), we have

∞∑
n=0

L(A,λ)
n (x) tn =

∞∑
n=0

∞∑
k=0

(−1)
k

(A+ I)n+k [(A+ I)k]
−1

(λx)
k

k!n!
tn+k.

On using the results given by Jódar and Company (1996)

(x
√

2A)k =

[ 12k]∑
r=0

k!

r!(k − 2r)!
Hk−2r(x,A)

and (15) we get

∞∑
n=0

L(A,λ)
n (x)tn

=

∞∑
n=0

∞∑
k=0

[ 12k]∑
r=0

(−1)kk!(A+ I)n+k[(A+ I)k]−1λk(
√

2A)−k

k!n!r!(k − 2r)!
Hk−2r(x,A)tn+k

=

∞∑
n=0

∞∑
k=0

[n2 ]∑
r=0

(−1)k(A+ I)n+k[(A+ I)k+2r]
−1λk+2r(

√
2A)−k−2r

(n− 2r)!r!k!
Hk(x,A)tn+k.

(26)

Substituting the well-known identity

1

(n− 2r)!
I =

(−n)2r
n!

I

=
22r

n!
(−nI

2
)r(−

(n− 1)I

2
)r;

(
0 ≤ r ≤ 1

2
n

)
and equation (3) in (26), we get proof of equation (24) after comparing the
coe�cients of tn.

If we consider the equation

(x
√

2A)k

k!
=

[ 12k]∑
r=0

(2k − 4r + 1)

r!( 3
2 )k−r

Pk−2r(x,A),

given in (see Upadhyaya and Shehata (2011)), we get the proof of equation (25)
similarly.
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4. Generating matrix functions for Laguerre

matrix polynomials

In this section, the interesting and alternative proofs of generating matrix
functions for Laguerre matrix polynomials are derived. We prove here the
following interesting formulae:

Theorem 4.1. Let A and C be matrices in Cr×r such that C+ (m+n)I is an
invertible matrix for all integers m+n ≥ 0 and <(z) > −1 for every eigenvalue
z ∈ σ(A) with |z| < 1

4 . Then the interesting generating matrix function for
Laguerre matrix polynomials is

H6(−A,C; z, λ zw) =

∞∑
n=0

(−A)2n[(C)n]−1[(A+ (1− 2n)I)n]−1znL(A−2nI,λ)
n (w),

(27)

where A− 2nI is a matrix in Cr×r satisfying the spectral condition (8) and let
λ be a complex number with < (λ) > 0.

Proof. The L.H.S of (27) is equal to

H6(−A,C; z, λ zw) =

∞∑
m,n=0

(−A)2n+m[(C)n+m]−1

n!m!
zn+m(λ w)m

=

∞∑
n=0

n∑
m=0

(−A)2n−m[(C)n]−1

(n−m)!m!
zn(λ w)m

by using (17), (9) and (4)

H6(−A,C; z, zw) =

∞∑
n=0

n∑
m=0

(−1)m(−A)2n[(I +A− 2nI)m]−1[(C)n]−1

m!(n−m)!
zn(λ w)m

=

∞∑
n=0

n∑
m=0

(−A)2n[(C)n]−1[(I +A− 2nI)n]−1znL(A−2nI,λ)
n (w)

which proves (27).

Theorem 4.2. Let B and C be matrices in Cr×r such that C+ (m+n)I is an
invertible matrix for all integers m+n ≥ 0 and <(z) > −1 for every eigenvalue
z ∈ σ(B). Then the Laguerre matrix polynomials have the following generating
matrix function

Φ3(−B;C;−z,−λ zw) =

∞∑
m=0

[(C)m]−1zmL(B−mI,λ)
m (w), (28)
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where B −mI is a matrix in Cr×r satisfying the spectral condition (8) and let
λ be a complex number with < (λ) > 0.

Proof. The L.H.S of (28) is equal to

Φ3(−B;C;−z,−λ zw) =

∞∑
m,n=0

(−1)m+n(−B)m[(C)m+n]−1

m!n!
zm+n(λ w)n

=

∞∑
m=0

m∑
n=0

(−1)m(−B)m−n[(C)m]−1

(m− n)!n!
zm(λ w)n

by using (17) and (9)

Φ3(−B;C;−z,−λ zw) =

∞∑
m,n=0

(−1)m+n(−B)m[(C)m+n]−1

m!n!
zm+n(λ w)n

=

∞∑
m=0

m∑
n=0

(−1)m(−B)m−n[(C)m]−1

(m− n)!n!
zm(λ w)n

=

∞∑
m=0

[(C)m]−1zmL(B−mI,λ)
m (w)

which proves (28).

Theorem 4.3. Let A1, B1 and C2 be matrices in Cr×r such that C2 +(n+p)I
is an invertible matrix for all integers n + p ≥ 0 and <(z) > −1 for every
eigenvalue z ∈ σ(B1) with |z| < 1. Laguerre matrix polynomials satisfy the
following generating matrix function:

(1− z)−B1
3Φ

(4)
M (A1,−B1,−B1;A1, C2, C2; z,−λ wu,−u(1− z))

=

∞∑
p=0

[(C2)p]
−1upL(B1−pI,λ)

p (w),
(29)

where B1 − pI is a matrix in Cr×r satisfying the spectral condition (8) and let
λ be a complex number with < (λ) > 0.
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Proof. From (14), (17) and (9), it follows that

(1− z)−B1
3Φ

(4)
M (A1,−B1,−B1;A1, C2, C2; z,−λ wu,−u(1− z))

=

∞∑
m,n,p=0

(−1)n+p(−B1)m+p[(C2)n+p]
−1

m!n!p!
zm(1− z)pI−B1(λ w)nun+p

=

∞∑
n,p=0

(−1)n+p[(C2)n+p]
−1

n!p!
(1− z)pI−B1(λ w)nun+p

∞∑
m=0

(−B1)m+p

m!
zm

=

∞∑
n,p=0

(−1)n+p[(C2)n+p]
−1

n!p!
(1− z)pI−B1(λ w)nun+p

∞∑
m=0

(−B1)p(−B1 + pI)m
m!

zm

=

∞∑
n,p=0

(−1)n+p(−B1)p[(C2)n+p]
−1

n!p!
(1− z)pI−B1(λ w)nun+p(1− z)B1−pI

=

∞∑
n,p=0

(−1)n+p(−B1)p[(C2)n+p]
−1

n!p!
(λ w)nun+p

=

∞∑
p=0

p∑
n=0

(−1)p(−B1)p−n[(C2)p]
−1

n!(p− n)!
(λ w)nup

=

∞∑
p=0

[(C2)p]
−1upL(B1−pI,λ)

p (w).

Theorem 4.4. Let A1, B1, B2 and C2 be matrices in Cr×r such that C2 +
(n + p)I is an invertible matrix for all integers n + p ≥ 0 and <(z) > −1 for
every eigenvalue z ∈ σ(B2) with |z| < 1 and |w(z − 1)| < 1. Laguerre matrix
polynomials satisfy the following relation:

(1− z)A1
3Φ

(1)
G (A1, A1, A1, B1,−B2;B1, C2, C2; z, w(z − 1), λ wu(z − 1))

=

∞∑
n=0

(A1)n[(C2)n]−1wnL(B2−nI,λ)
n (u),

(30)

where B2 − nI is a matrix in Cr×r satisfying the spectral condition (8) and let
λ be a complex number with < (λ) > 0.

Malaysian Journal of Mathematical Sciences 455



Ayman Shehata

Proof. Using (14), (17) and (9), we have

(1− z)A1
3Φ

(1)
G (A1, A1, A1, B1,−B2;B1, C2, C2; z, w(z − 1), λ wu(z − 1))

=

∞∑
m,n,p=0

(−1)n+p(A1)m+n+p(−B2)n[(C2)n+p]
−1

m!n!p!
zm(1− z)A1+(n+p)Iwn+p(λ u)p

=

∞∑
n,p=0

(−1)n+p(−B2)n[(C2)n+p]
−1

n!p!
(1− z)A1+(n+p)Iwn+p(λ u)p

∞∑
m=0

(A1)m+n+p

m!
zm

=

∞∑
n,p=0

(−1)n+p(A1)n+p(−B2)n[(C2)n+p]
−1

n!p!
wn+p(λ u)p

=

∞∑
n=0

n∑
p=0

(−1)n(A1)n(−B2)n−p[(C2)n]−1

(n− p)!p!
wn(λ u)p

=

∞∑
n=0

(A1)n[(C2)n]−1wnL(B2−nI,λ)
n (u).

Theorem 4.5. Let B be a matrix in Cr×r, B − mI satisfying the spectral
condition (8) and let λ be a complex number with < (λ) > 0. Then Laguerre
matrix polynomials can be written as hypergeometric matrix function:

∞∑
m=0

1

m!
0F1(−;mI −B;λ zw)zm

=

∞∑
m=0

Γ(B + (1−m)I)Γ−1(B + I)zmL(B−mI,λ)
m (w).

(31)

Proof. Putting B = C in (13), we obtain

Φ3(−B;−B;−z,−λ zw) =

∞∑
m,n=0

(−1)m+n(−B)m[(−B)m+n]−1

m!n!
zm+n(λ w)n

=

∞∑
m,n=0

(−1)m+n[(mI −B)n]−1

m!n!
zm+n(λ w)n

=

∞∑
m=0

(−1)m

m!
zm

∞∑
n=0

(−1)n[(mI −B)n]−1

n!
zn(λ w)n

=

∞∑
m=0

(−1)m

m!
zm 0F1(−;mI −B;−λ zw)
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by using (28), we obtain (31).

Theorem 4.6. Let B2 is a matrix in Cr×r, B2 − nI satisfy the condition (8)
and let λ be a complex number with < (λ) > 0. Laguerre matrix polynomials
satisfy the interesting generating matrix function:

e−λ zw(1 + w)B2 =

∞∑
n=0

wnL(B2−nI,λ)
n (z). (32)

Proof. The L.H.S. of (32) is equal to

e−λ zw(1 + w)B2 =

∞∑
n,p=0

(−1)n+p(−B2)n
n!p!

wn+p(λ z)p

=

∞∑
n,p=0

(−1)n+p(−B2)n
n!p!

wn+p(λ z)p =

∞∑
n=0

n∑
p=0

(−1)n(−B2)n−p
(n− p)!p!

wn(λ z)p

=

∞∑
n=0

wnL(B2−nI,λ)
n (z)

which proves (32).

Let A be a matrix in CN×N satisfying the spectral condition (8) and let
λ be a complex number with <(λ) > 0. We de�ne the generalized Laguerre
matrix polynomials of two variables by the following

L(A,λ)
n (x, y) =

n∑
k=0

(−1)k(A+ I)n[(A+ I)k]−1λkyn−kxk

k!(n− k)!
. (33)

Using (3), (16) and (33), we obtain the generating matrix function which rep-
resents an explicit representation for the Laguerre matrix polynomials

∞∑
n=0

L(A,λ)
n (x, y)tn = (1− yt)−(A+I) exp

(
−λ xt
1− yt

)
. (34)

Finally, it is now interesting to extend the above results to new generalized
forms of generalized Laguerre matrix polynomials of two variables can be de-
�ned in the form:

L(A,λ)
n (x, y;B) =

n∑
k=0

(−1)k(A+ I)n[(A+ I)k]−1Bn,kλ
kyn−k

k!(n− k)!
(35)
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where

Bn,k = n!xk 2F1(−kI,B;−nI;x) =

k∑
i=0

k!(n− i)!
i!(k − i)!

(B)ix
k+i, (36)

where A and B are matrices in CN×N such that A satis�es the condition (8)
and B satis�es the condition <(z) > 0 for every eigenvalue z ∈ σ(B).

When B is the zero matrix, then the Laguerre matrix polynomials of two
variables reduce to

L(A,λ)
n (x, y;0) = L(A,λ)

n (x, y) (37)

From (36), we can write in the following integral representation

Bn,k = xkΓ−1(B)

∫ ∞
0

∫ ∞
0

e−(t+u)tnuB−I(1 +
xu

t
)kdtdu. (38)

Theorem 4.7. Let A and B be matrices in CN×N such that A satisfy the
condition (8) and B satisfy the condition <(z) > 0 for every eigenvalue z ∈
σ(B). Then the generalized Laguerre matrix polynomials of two variables has
the following integral representation:

L(A,λ)
n (x, y;B) = Γ−1(B)

∫ ∞
0

∫ ∞
0

e−(t+u)tnuB−IL(A,λ)
n (x(1 +

xu

t
), y)dtdu.

(39)

Proof. Using (33), (38) and (35), we obtain (39). Thus, the result is completed.
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